Attenuation Kinetics and Desorption Performance of artocarpus altilis Seed Husk for Co (II), Pb (II) and Zn (II) Ions
Authors
Abstract:
The potential of Bread Fruit (artocarpus altilis)Seed Husk (BFSH) as low-cost biosorbent for the removal of Pb (II), Zn (II) and Co (II) ions from aqueous solution was investigated. The adsorbent was characterized by the Fourier Transform InfraRed (FT-IR)spectroscopy, Scanning Electron Microscopy (SEM) and X-Ray Diffraction (XRD). The batch methodology was utilized to determine the effect of pH, metal ion concentration, adsorbent dose, contact time and temperature on biosorption. Data generated were fitted into appropriate isotherm, kinetic and thermodynamic models. The effect of pH showed an increase in adsorption of metals with an increase in pH and an optimum pH of 5.0 was obtained for Pb (II), while 6.0 were obtained for Co (II) and Zn (II) ions biosorption. An equilibrium sorption contact time of 30, 40 and 60 min was obtained for Co (II), Zn (II) and Pb (II) ions respectively. The biosorption of metal ions was in the order Co (II) > Pb (II) > Zn (II). In general, the Freundlich model provided a better fit than the Langmuir, Tempkin, and Dubinin-Radushkevich isotherm models with R2 values greater than 0.9. The pseudo-first-order kinetic model was applicable in the adsorption of Pb (II) and Zn (II) ions while the pseudo-second-order model provided the best fit for Co (II) ion adsorption. The adsorption mechanism was found to be controlled by the liquid film diffusion model (R2>0.9) rather than the intraparticle diffusion model (R2<0.9). Thermodynamics revealed a spontaneous, feasible, exothermic physisorption process and over 60% of the metal ions were desorbed using 0.1M HCl and 0.1M NaOH as eluent. The results showed that BFSH could be utilized as low cost adsorbent for the removal of toxic heavy metals from solution.
similar resources
Pb(II), Cu(II) and Cd(II) removal through untreated rice husk; thermodynamics and kinetics.
The sorption properties of rice husk towards Cu(II), Cd(II) and Pb(II) were studied. The sorption isotherms are described by the Langmuir equation, and Pb(II) shows a higher affinity for rice husk compared to Cu(II) and Cd(II) under the same conditions. The kinetics of sorption obeys to a pseudo second-order equation for all metals. The sorption profiles as a function of the pH were used to ...
full textEfficiency of Chitosan for the Removal of Pb (II), Fe (II) and Cu (II) Ions from Aqueous Solutions
Background: Heavy metals have been recognized as harmful environmental pollutant known to produce highly toxic effects on different organs and systems of both humans and animals. The aim of this paper is to evaluate the adsorption potential of chitosan for the removal of Pb(II), Fe(II) and Cu(II) ions from aqueous solutions. Methods: This study was conducted in laboratory scale. In this paper ...
full textExperimental modeling of the adsorption kinetics of Cd (II) and Pb (II) ions by Calix [4] arene surface
The removal of Cd2+ and Pb2+ ions from wastewater using p-tert-butyl-calix[4] arene was investigated in terms of initial pH, initial concentration, adsorbent dosage, contact time and temperature. The maximum adsorption occurred at the pH value of 6. The adsorbent studied exhibits high efficiency for Cd (II)and Pb (II) adsorption and the equilibrium states could be achieved in 10 min. Adsorption...
full textRemoval of Co(II), Cu(II) and Pb(II) ions by polymer based 2-hydroxyethyl methacrylate: thermodynamics and desorption studies
Removal thermodynamics and desorption studies of some heavy metal ions such as Co(II), Cu(II) and Pb(II) by polymeric surfaces such as poly 2-hydroxyethyl methacrylate (PHEMA) and copolymer 2-hydroxyethyl methacrylate with monomer methyl methacrylate P(MMA-HEMA) as adsorbent surfaces from aqueous single solution were investigated with respect to the changes in pH of solution, adsorbent composit...
full textA Potentiometric Study of Guanidinoacetic Acid Complexation with the Ions Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II)
Foi estudado a complexação do ácido guanidoacético (AGA) com alguns íons de interesse biológico, a saber : Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) e Pb(II). Após o AGA ter sido sintetizado e caracterizado, foram determinadas potenciometricamente as constantes de dissociação deste ligante, assim como a de formação de seus complexos e hidroxicomplexos com os íons supracitados. A maioria do...
full textSorption of Zn(II), Pb(II), and Co(II) using natural sorbents: equilibrium and kinetic studies.
Natural Jordanian sorbent (consisting of primary minerals, i.e., quartz and aluminosilicates and secondary minerals, i.e., calcite and dolomite) was shown to be effective for removing Zn(II), Pb(II) and Co(II) from aqueous solution. The major mineral constitutions of the sorbent are calcite and quartz. Dolomite was present as minor mineral and palygorskite was present as trace mineral. The sorb...
full textMy Resources
Journal title
volume 37 issue 3
pages 171- 186
publication date 2018-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023